3.59 \(\int \cos ^3(c+d x) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx\)

Optimal. Leaf size=102 \[ \frac {2 a^2 (2 A+3 B) \sin (c+d x)}{3 d}+\frac {a^2 (2 A+3 B) \sin (c+d x) \cos (c+d x)}{6 d}+\frac {1}{2} a^2 x (2 A+3 B)+\frac {A \sin (c+d x) \cos ^2(c+d x) (a \sec (c+d x)+a)^2}{3 d} \]

[Out]

1/2*a^2*(2*A+3*B)*x+2/3*a^2*(2*A+3*B)*sin(d*x+c)/d+1/6*a^2*(2*A+3*B)*cos(d*x+c)*sin(d*x+c)/d+1/3*A*cos(d*x+c)^
2*(a+a*sec(d*x+c))^2*sin(d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 102, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {4013, 3788, 2637, 4045, 8} \[ \frac {2 a^2 (2 A+3 B) \sin (c+d x)}{3 d}+\frac {a^2 (2 A+3 B) \sin (c+d x) \cos (c+d x)}{6 d}+\frac {1}{2} a^2 x (2 A+3 B)+\frac {A \sin (c+d x) \cos ^2(c+d x) (a \sec (c+d x)+a)^2}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^3*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x]),x]

[Out]

(a^2*(2*A + 3*B)*x)/2 + (2*a^2*(2*A + 3*B)*Sin[c + d*x])/(3*d) + (a^2*(2*A + 3*B)*Cos[c + d*x]*Sin[c + d*x])/(
6*d) + (A*Cos[c + d*x]^2*(a + a*Sec[c + d*x])^2*Sin[c + d*x])/(3*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2637

Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3788

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[(2*a*b)/
d, Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 4013

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[(
a*A*m - b*B*n)/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A
, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]

Rule 4045

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e
 + f*x]*(b*Csc[e + f*x])^m)/(f*m), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rubi steps

\begin {align*} \int \cos ^3(c+d x) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx &=\frac {A \cos ^2(c+d x) (a+a \sec (c+d x))^2 \sin (c+d x)}{3 d}+\frac {1}{3} (2 A+3 B) \int \cos ^2(c+d x) (a+a \sec (c+d x))^2 \, dx\\ &=\frac {A \cos ^2(c+d x) (a+a \sec (c+d x))^2 \sin (c+d x)}{3 d}+\frac {1}{3} (2 A+3 B) \int \cos ^2(c+d x) \left (a^2+a^2 \sec ^2(c+d x)\right ) \, dx+\frac {1}{3} \left (2 a^2 (2 A+3 B)\right ) \int \cos (c+d x) \, dx\\ &=\frac {2 a^2 (2 A+3 B) \sin (c+d x)}{3 d}+\frac {a^2 (2 A+3 B) \cos (c+d x) \sin (c+d x)}{6 d}+\frac {A \cos ^2(c+d x) (a+a \sec (c+d x))^2 \sin (c+d x)}{3 d}+\frac {1}{2} \left (a^2 (2 A+3 B)\right ) \int 1 \, dx\\ &=\frac {1}{2} a^2 (2 A+3 B) x+\frac {2 a^2 (2 A+3 B) \sin (c+d x)}{3 d}+\frac {a^2 (2 A+3 B) \cos (c+d x) \sin (c+d x)}{6 d}+\frac {A \cos ^2(c+d x) (a+a \sec (c+d x))^2 \sin (c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.17, size = 61, normalized size = 0.60 \[ \frac {a^2 (3 (7 A+8 B) \sin (c+d x)+3 (2 A+B) \sin (2 (c+d x))+A \sin (3 (c+d x))+12 A d x+18 B d x)}{12 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^3*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x]),x]

[Out]

(a^2*(12*A*d*x + 18*B*d*x + 3*(7*A + 8*B)*Sin[c + d*x] + 3*(2*A + B)*Sin[2*(c + d*x)] + A*Sin[3*(c + d*x)]))/(
12*d)

________________________________________________________________________________________

fricas [A]  time = 0.44, size = 70, normalized size = 0.69 \[ \frac {3 \, {\left (2 \, A + 3 \, B\right )} a^{2} d x + {\left (2 \, A a^{2} \cos \left (d x + c\right )^{2} + 3 \, {\left (2 \, A + B\right )} a^{2} \cos \left (d x + c\right ) + 2 \, {\left (5 \, A + 6 \, B\right )} a^{2}\right )} \sin \left (d x + c\right )}{6 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)),x, algorithm="fricas")

[Out]

1/6*(3*(2*A + 3*B)*a^2*d*x + (2*A*a^2*cos(d*x + c)^2 + 3*(2*A + B)*a^2*cos(d*x + c) + 2*(5*A + 6*B)*a^2)*sin(d
*x + c))/d

________________________________________________________________________________________

giac [A]  time = 0.55, size = 142, normalized size = 1.39 \[ \frac {3 \, {\left (2 \, A a^{2} + 3 \, B a^{2}\right )} {\left (d x + c\right )} + \frac {2 \, {\left (6 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 9 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 16 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 24 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 18 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 15 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{3}}}{6 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)),x, algorithm="giac")

[Out]

1/6*(3*(2*A*a^2 + 3*B*a^2)*(d*x + c) + 2*(6*A*a^2*tan(1/2*d*x + 1/2*c)^5 + 9*B*a^2*tan(1/2*d*x + 1/2*c)^5 + 16
*A*a^2*tan(1/2*d*x + 1/2*c)^3 + 24*B*a^2*tan(1/2*d*x + 1/2*c)^3 + 18*A*a^2*tan(1/2*d*x + 1/2*c) + 15*B*a^2*tan
(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 + 1)^3)/d

________________________________________________________________________________________

maple [A]  time = 1.05, size = 116, normalized size = 1.14 \[ \frac {\frac {a^{2} A \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3}+2 a^{2} A \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+B \,a^{2} \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+a^{2} A \sin \left (d x +c \right )+2 B \,a^{2} \sin \left (d x +c \right )+B \,a^{2} \left (d x +c \right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^3*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)),x)

[Out]

1/d*(1/3*a^2*A*(2+cos(d*x+c)^2)*sin(d*x+c)+2*a^2*A*(1/2*cos(d*x+c)*sin(d*x+c)+1/2*d*x+1/2*c)+B*a^2*(1/2*cos(d*
x+c)*sin(d*x+c)+1/2*d*x+1/2*c)+a^2*A*sin(d*x+c)+2*B*a^2*sin(d*x+c)+B*a^2*(d*x+c))

________________________________________________________________________________________

maxima [A]  time = 0.33, size = 110, normalized size = 1.08 \[ -\frac {4 \, {\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} A a^{2} - 6 \, {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} A a^{2} - 3 \, {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} B a^{2} - 12 \, {\left (d x + c\right )} B a^{2} - 12 \, A a^{2} \sin \left (d x + c\right ) - 24 \, B a^{2} \sin \left (d x + c\right )}{12 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)),x, algorithm="maxima")

[Out]

-1/12*(4*(sin(d*x + c)^3 - 3*sin(d*x + c))*A*a^2 - 6*(2*d*x + 2*c + sin(2*d*x + 2*c))*A*a^2 - 3*(2*d*x + 2*c +
 sin(2*d*x + 2*c))*B*a^2 - 12*(d*x + c)*B*a^2 - 12*A*a^2*sin(d*x + c) - 24*B*a^2*sin(d*x + c))/d

________________________________________________________________________________________

mupad [B]  time = 1.89, size = 98, normalized size = 0.96 \[ A\,a^2\,x+\frac {3\,B\,a^2\,x}{2}+\frac {7\,A\,a^2\,\sin \left (c+d\,x\right )}{4\,d}+\frac {2\,B\,a^2\,\sin \left (c+d\,x\right )}{d}+\frac {A\,a^2\,\sin \left (2\,c+2\,d\,x\right )}{2\,d}+\frac {A\,a^2\,\sin \left (3\,c+3\,d\,x\right )}{12\,d}+\frac {B\,a^2\,\sin \left (2\,c+2\,d\,x\right )}{4\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^3*(A + B/cos(c + d*x))*(a + a/cos(c + d*x))^2,x)

[Out]

A*a^2*x + (3*B*a^2*x)/2 + (7*A*a^2*sin(c + d*x))/(4*d) + (2*B*a^2*sin(c + d*x))/d + (A*a^2*sin(2*c + 2*d*x))/(
2*d) + (A*a^2*sin(3*c + 3*d*x))/(12*d) + (B*a^2*sin(2*c + 2*d*x))/(4*d)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ a^{2} \left (\int A \cos ^{3}{\left (c + d x \right )}\, dx + \int 2 A \cos ^{3}{\left (c + d x \right )} \sec {\left (c + d x \right )}\, dx + \int A \cos ^{3}{\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}\, dx + \int B \cos ^{3}{\left (c + d x \right )} \sec {\left (c + d x \right )}\, dx + \int 2 B \cos ^{3}{\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}\, dx + \int B \cos ^{3}{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**3*(a+a*sec(d*x+c))**2*(A+B*sec(d*x+c)),x)

[Out]

a**2*(Integral(A*cos(c + d*x)**3, x) + Integral(2*A*cos(c + d*x)**3*sec(c + d*x), x) + Integral(A*cos(c + d*x)
**3*sec(c + d*x)**2, x) + Integral(B*cos(c + d*x)**3*sec(c + d*x), x) + Integral(2*B*cos(c + d*x)**3*sec(c + d
*x)**2, x) + Integral(B*cos(c + d*x)**3*sec(c + d*x)**3, x))

________________________________________________________________________________________